mpfr_libmpfr_fmodquo Method (mpfr_t, Int32, mpfr_t, mpfr_t, mpfr_rnd_t) |
Namespace: Math.Mpfr.Native
public static int mpfr_fmodquo( mpfr_t r, ref int q, mpfr_t x, mpfr_t y, mpfr_rnd_t rnd )
Special values are handled as described in Section F.9.7.1 of the ISO C99 standard: If x is infinite or y is zero, r is NaN. If y is infinite and x is finite, r is x rounded to the precision of r. If r is zero, it has the sign of x.
Additionally, O:Math.Mpfr.Native.mpfr_lib.mpfr_fmodquo stores the low significant bits from the quotient n in q (more precisely the number of bits in a long minus one), with the sign of x divided by y (except if those low bits are all zero, in which case zero is returned). Note that x may be so large in magnitude relative to y that an exact representation of the quotient is not practical.
// Create, initialize, and set a new floating-point number x to 100. mpfr_t x = new mpfr_t(); mpfr_lib.mpfr_init2(x, 64U); Assert.IsTrue(mpfr_lib.mpfr_set_si(x, 100, mpfr_rnd_t.MPFR_RNDN) == 0); // Create, initialize, and set a new floating-point number y to 3. mpfr_t y = new mpfr_t(); mpfr_lib.mpfr_init2(y, 64U); Assert.IsTrue(mpfr_lib.mpfr_set_si(y, 3, mpfr_rnd_t.MPFR_RNDN) == 0); // Create and initialize a new floating-point number r. mpfr_t r = new mpfr_t(); mpfr_lib.mpfr_init2(r, 64U); // Set r = x - n * y where n = trunc(x / y). int q = 0; Assert.IsTrue(mpfr_lib.mpfr_fmodquo(r, ref q, x, y, mpfr_rnd_t.MPFR_RNDN) == 0); // Assert the value of z and q. Assert.IsTrue(r.ToString() == "0.100000000000000000000e1" && q == 33); // Release unmanaged memory allocated for r, x, and y. mpfr_lib.mpfr_clears(r, x, y, null);