Click or drag to resize
mpfr_libmpfr_hypot Method
Set rop to the Euclidean norm of x and y, i.e., the square root of the sum of the squares of x and y rounded in the direction rnd.

Namespace:  Math.Mpfr.Native
Assembly:  Math.Mpfr.Native (in Math.Mpfr.Native.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public static int mpfr_hypot(
	mpfr_t rop,
	mpfr_t x,
	mpfr_t y,
	mpfr_rnd_t rnd
)

Parameters

rop
Type: Math.Mpfr.Nativempfr_t
The result floating-point number.
x
Type: Math.Mpfr.Nativempfr_t
The first operand floating-point number.
y
Type: Math.Mpfr.Nativempfr_t
The second operand floating-point number.
rnd
Type: Math.Mpfr.Nativempfr_rnd_t
The rounding direction.

Return Value

Type: Int32
Return zero, a positive, or a negative value if rop is respectively equal to, greater than, or lower than the exact result. See GNU MPFR - Rounding Modes for details.
Remarks

Special values are handled as described in the ISO C99 (Section F.9.4.3) and IEEE 754-2008 (Section 9.2.1) standards: If x or y is an infinity, then +Inf is returned in rop, even if the other number is NaN.

Examples
// Create, initialize, and set a new floating-point number x to -3.
mpfr_t x = new mpfr_t();
mpfr_lib.mpfr_init2(x, 64U);
Assert.IsTrue(mpfr_lib.mpfr_set_si(x, -3, mpfr_rnd_t.MPFR_RNDN) == 0);

// Create, initialize, and set a new floating-point number y to 4.
mpfr_t y = new mpfr_t();
mpfr_lib.mpfr_init2(y, 64U);
Assert.IsTrue(mpfr_lib.mpfr_set_si(y, 4, mpfr_rnd_t.MPFR_RNDN) == 0);

// Create and initialize a new floating-point number z.
mpfr_t z = new mpfr_t();
mpfr_lib.mpfr_init2(z, 64U);

// Set z = sqrt(x^2 + y^2).
Assert.IsTrue(mpfr_lib.mpfr_hypot(z, x, y, mpfr_rnd_t.MPFR_RNDN) == 0);

// Assert that the value of z is 5.
Assert.IsTrue(mpfr_lib.mpfr_cmp_si(z, 5) == 0);

// Release unmanaged memory allocated for x, y, and z.
mpfr_lib.mpfr_clears(x, y, z, null);
See Also