mpfr_libmpfr_urandomb Method |
Namespace: Math.Mpfr.Native
More precisely, the number can be seen as a float with a random non-normalized significand and exponent 0, which is then normalized (thus if e denotes the exponent after normalization, then the least -e significant bits of the significand are always 0).
The second argument is a gmp_randstate_t structure which should be created using the GMP gmp_randinit function (see the GMP manual).
Note: for a given version of MPFR, the returned value of rop and the new value of state (which controls further random values) do not depend on the machine word size.
// Create, initialize, and seed a new random number generator. gmp_randstate_t state = new gmp_randstate_t(); gmp_lib.gmp_randinit_mt(state); gmp_lib.gmp_randseed_ui(state, 100000U); // Create, initialize, and set the value of rop to NaN. mpfr_t rop = new mpfr_t(); mpfr_lib.mpfr_init2(rop, 64U); // Generate a random integer in the range [0, 1). Assert.IsTrue(mpfr_lib.mpfr_urandomb(rop, state) == 0); // Free all memory occupied by state and rop. gmp_lib.gmp_randclear(state); mpfr_lib.mpfr_clear(rop);